TRACE METALS ACTING AS CATALYST IN A MARINE CLOUD: A MODEL

R. Losno,

LISA, Universités Paris 7 - 12, UMR 7583 CNRS

The objet cloud

What situation: Non polluted cloud, with or without dissolution of trace metals

Influence of trace metal


Why use trace metals into models?

Is it time consuming?

CLOUD FORMATION

Examples:


Heterogeneous reactions (water-gas, water-solid)

Homogeneous reactions within the waterNON POLLUTED AREA REACTION SET

Reactants and products, mol.L­1:

O3: 3.000E-10 H2O2: 2.800E-05 HO2: 0.000E+00

O2-: 0.000E+00 OH: 1.000E-14 H+: 1.000E-05

hv: 1.000E+00 O2: 3.000E-04 FeII: 2.000E-08

FeIII: 4.000E-08 MnII: 3.000E-09 MnIII: 0.000E+00

CuI: 0.000E+00 CuII: 1.000E-09

Constant (mol.L­1):

H+: 1.000E-05 O3: 3.000E-10

Reactions:

(01) H2O2 + hv --> OH + OH k=5.700E-07

(02) HO2 + OH --> O2 k=7.000E+09

(03) O2- + OH --> O2 k=1.100E+10

(04) H2O2 + OH --> HO2 k=2.700E+07

(05) O3 + OH --> HO2 + O2- k=2.000E+09

(06) HO2 + HO2 --> H2O2 + O2 k=8.600E+05

(07) HO2 + O2- --> H2O2 + O2 k=1.000E+08

(08) H2O2 + HO2 --> OH + O2 k=5.000E-01

(09) H2O2 + O2- --> OH + O2 k=1.300E-01

(10) O3 + O2- --> OH + O2 + O2 k=1.500E+09

(11) OH + MnII --> MnIII k=3.400E+07

(12) HO2 + MnII --> MnIII + H2O2 k=6.000E+06

(13) O2- + MnII --> MnIII + H2O2 k=1.100E+08

(14) HO2 + MnIII --> MnII + O2 + H+ k=2.000E+04

(15) O2- + MnIII --> MnII + O2 k=1.500E+08

(16) H2O2 + MnIII --> MnII + HO2 + H+ k=3.200E+04

(17) HO2 + FeIII --> FeII + H+ + O2 k=2.000E+04

(18) O2- + FeIII --> FeII + O2 k=1.500E+08

(19) hv + FeIII --> FeII + OH k=5.900E-04 (at pH 5)

(20) HO2 + FeII --> FeIII + H2O2 k=1.200E+06

(21) O2- + FeII --> FeIII + H2O2 k=1.000E+07

(22) OH + FeII --> FeIII k=3.000E+08

(23) O3 + FeII --> FeIII + OH + O2 k=1.700E+05

(24) FeII + MnIII --> FeIII + MnII k=2.100E+04

(25) H2O2 + FeII --> FeIII + OH k=6.010E+01

(26) O2 + FeII --> FeIII + O2- k=7.900E-04

(27) FeIII + CuI --> FeII + CuII k=1.000E+07

(28) OH + CuI --> CuII k=3.000E+08

(29) HO2 + CuI --> CuII + H2O2 k=1.500E+09

(30) O2- + CuI --> CuII + H2O2 k=1.000E+10

(31) H2O2 + CuI --> CuII + OH k=4.000E+05

(32) MnIII + CuI --> CuII + MnII k=2.100E+04

(33) HO2 + CuII --> CuI + O2 + H+ k=1.000E+08

(34) O2- + CuII --> CuI + O2 k=5.000E+09

Acid/Base Couples:

HO2 / O2- pKa= 4.68

CHEMICAL SYSTEM DYNAMIC



Simple system without trace metal dissolution



Simple system with trace amounts of Fe, Cu and Mn

SYSTEM REDUCTION

Short system:

(01) H2O2 + hv --> OH + OH k=5.700E-07

(04) H2O2 + OH --> HO2 k=2.700E+07

(18) O2- + FeIII --> FeII + O2 k=1.500E+08

(19) hv + FeIII --> FeII + OH k=5.900E-04 at pH 5

(25) H2O2 + FeII --> FeIII + OH k=6.010E+01

(31) H2O2 + CuI --> CuII + OH k=4.000E+05

(34) O2- + CuII --> CuI + O2 k=5.000E+09



PHOTOSTATIONARY STATE



[O2-] =



[OH] =



ADDITION OF OTHER REACTIVE COMPOUNDS

Methanol: 1.000E-07 mol.L­1

(39) OH + CH3OH --> CH2O k=9.700E+08

(40) OH + CH2O --> HCOOH + HO2 k=7.700E+08

(41) OH + HCOOH --> HO2 k=1.100E+08

(42) OH + HCOO- --> HO2 k=3.100E+09

OH concentration variations


HO2 concentration variations

LONG TERM EVOLUTION

Iron and HO2 with methanol



Methanol oxidation

CONCLUSION


Adding trace metals completely change the reaction scheme

Adding trace metals make the system very less sensitive to other reactive species

Adding trace metals let hope to use photostationary equilibrium instead of kinetics

The trace metal amounts injected in the model are an average value measured in rainwater. We must go further to include particulate-dissolved dynamic modelisation.