Flux air-mer de CO₂ dans l'océan sud d'après 65 mois de mesures CARIOCA

J. Boutin⁽¹⁾, L. Merlivat⁽¹⁾, C. Hénocq⁽¹⁾, N. Martin⁽¹⁾, J.B. Sallée⁽²⁾ ⁽¹⁾ LOCEAN, Paris ⁽²⁾ LEGOS, Toulouse

Plan

- Introduction
- Mesures CARIOCA
- Flux air-mer de CO₂
- Zoom sur la variabilité de fCO₂ :
 - Proche du front subantarctique
 - Proche du front subtropical
- Conclusion

Why the southern ocean (south of Subtropical front; ~40S-50S)?

- Large undersaturations of CO₂ observed in surface waters; large area; strong wind speeds => region suspected to be a strong sink of CO₂
- CO₂ sink could be affected by climate change (Lequéré et al 2007) But:
- Discrepancy of about a factor 2 between air-sea CO₂ fluxes estimated by various methods (36S-56S) (Gloor et al. 2003)
- Large uncertainty in atmospheric inversions: e.g. Patra et al. 2005: uncertainty of 1.21PGC yr⁻¹ (45S-60S), Baker et al. 2006: long term flux (1992-1996; soith of 45S): -0.28 to -0.55PgC yr⁻¹
- Few measurements, especially in winter

CARIOCA drifters

- Ocean measurements at 2m depth: –fCO₂ (accuracy <3µatm) –SST –SSS
 - -Fluorescence
- Atm. measurements of: –Wind speed
 - -Atm. Pressure
- Trajectory influenced by : –15m depth currents
- Lifetime: about 1 year
- DIC deduced from fCO2, SST and SSS assuming Alk/SSS relationship (Lee et al, 2006)

F=K ∆fCO2; K from Wanninkhof (1992) rel.

9 CARIOCAs deployed between 2001 and 2006 sampled SAZ and PZ during all seasons

CARIOCA TRAJECTORIES (Carioca # are color coded)

SAZ: Subantarctic zone between PF and SAF PF: Polar zone between SAF and STF

9 CARIOCAs deployed between 2001 and 2006 sampled SAZ and PZ during all seasons

CARIOCA TRAJECTORIES (Carioca # are color coded)

CARIOCA measurements

DIC deduced from fCO₂, SST, SSS using Lee et al. (2006) Alk-SSS relationship and Lueker et al. (2000) dissociation constants

DIC versus distance to front

In PZ: DIC between 2080μ mol/kg and 2120μ mol/kg (except during one episodic event in Sept. on PF close to 9W-49S) –seasonal variation< 30μ mol/kg

In SAZ: DIC between 2020 μ mol/kg and 2120 μ mol/kg; decrease of DIC from SAF to STF by about 40 μ mol/kg ; at a given distance to the SAF, seasonal variation of about 50 μ mol/kg with maximum in Aug-Oct and minimum in Jan-March

fCO2 versus distance to front

In PZ: fCO_2 between 330µatm and 390µatm – no clear seasonal variation

In SAZ: fCO_2 between 400µatm and 290µatm; decrease of fCO_2 from SAF to STF by about 30µatm; no evidence of seasonal variation

Air-sea flux of CO₂ along buoys trajectories

(Use of k-U relationship of Wanninkhof, 1992) and QSCAT wind speeds

Air-sea CO₂ fluxes integrated by seasons in PZ and SAZ

	January- March	April-Jun	July-August	September- December	Yearly
Flux in SAZ (mmol $m^{-2} d^{-1}$)	-5.4	-5.6	-6.4	-6.6	-6.0
Surface of SAZ (10^6 km^2)	31.3	31.3	30.6	30.7	31.0
Flux in SAZ (PgC)	-0.18	-0.19	-0.21	-0.22	-0.81
Flux in PZ (mmol $m^{-2} d^{-1}$)	-0.70	-1.25	-3.87	-0.41	-1.56
Surface of PZ (10^6 km^2)	13.7	13.2	13.4	13.6	13.5
Flux in PZ (PgC)	-0.01	-0.02	-0.06	-0.01	-0.09

Due to large surface, low fCO_2 and large winds, SAZ is a strong sink for atmospheric CO_2 (-0.8 PgC yr⁻¹)

Mixing and high DIC close to SAF in the Pacific in Sept-Oct

Boutin et al. 20(

CARIOCA and ARGO floats close to subtropical front (Pacific Ocean)

Stage Master HENOCQ Claire

CARIOCA and ARGO floats close to subtropical front (Pacific Ocean)

ARGO profiles=> compensated layers at 170-230m depth

CARIOCA and ARGO T-S diagrams

DIC maxima observed at ocean surface by CARIOCA correspond to (T,S) observed at the basis of compensated depth on ARGO profiles (170-230m):

This suggests that basis of compensated layer is rich in DIC and outcrops at surface in some places Boutin et al. 2007 SOLAS-FRANCE

Summary

65 months of CARIOCA measurements in SAZ and PZ =>

- SAZ strong sink (-0.8PgC yr⁻¹) contrary to PZ (-0.1PgC yr⁻¹)
- Seasonal variation of DIC in SAZ (~50µmol kg⁻¹) but no seasonal variation of fCO₂ because of a compensation between DIC and SST variations

These conclusions are very consistent with McNeil et al. (2007) findings: -Sink of 1.1+/-0.6PgC yr¹ between 40S and 50S

-Summertime depletion of DIC of $30-50\mu$ mol kg⁻¹ but ~no fCO₂ variation -Weak sink in PZ

- Decrease of DIC and fCO₂ (~40µmol kg⁻¹ and 30µatm) from SAF to STF at all seasons (high biological activity close to STF)
- High DIC in region of SAMW formation close to SAF is linked to mixing in Sept-Oct
- Close to STF, in winter, large mesoscale fCO₂ variations could originate from the presence of high DIC in compensated layer outcropping at the ocean surface

Main unknown regions and seasons

- Pacific Ocean (in particular east Pacific)
- Middle of Atlantic

• Winter – early Spring seasons