SOLAS France 2015, juin 29, 2015, at IPGP, 1rue Jussieu, Paris

solas

Temporal variability and meteorological control of mineral aerosol in the south Patagonia

Z. Qu^{1,2,3}(zihan.qu88@gmail.com), R. Losno^{1,3}, É. Journet¹, J. Salvador⁴,
D. Bulnes⁴, F. Monna⁵, Y. Balkanski⁶, J.P. Quisefit¹, A. Heimburger¹,
P. Ristori⁴, and E. Quel⁴

¹LISA UMR 7583, Fr. ²Université Pierre et Marie Curie (UPMC), Fr. ³LGE, IPGP, Fr. ⁴División Lidar, CEILAP, Ar. ⁵ARTéHIS UMR 6298, Fr. ⁶LSCE/IPSL, CEA, Fr

Contents

Background

Dust biogeochemical cycles

Nitrate & Chlorophyll concentration in surface seawater

Source: NASA SeaWiFs

Contribution to the dust deposition into Southern Ocean

SAM: 58% AUS: 36% SAF: 2% NHE: 3%

> Source: Li et al., 2008 GFDL GCM AM2 model results

Contribution to the dust deposition into Southern Ocean

Object

1.Measure the dust concentration and composition over Patagonia

2.Pattern and origin of temporal variability of aerosol concentration

Methodology

Aerosol sampling

Backgrd.

Object

Results

Annual precipitation

Aerosol sampling

filters changed every week

Backgrd.	Object	Methods	Results	Conclusion

Analytical method

Backgrd.

Ref. of Dust:SiAIFeRef. of Sea Salt:Na

EDXRF: Energie Dispersive X-Ray Fluorescence

Configuration: 48 hrs trajectory start a new trajectory every 24 hrs 500m above ground level

Wind reanalysis using ECMWF model

Results

Aerosol composition variation by month

■ Al2O3 ■ TFe2O3 ■ SiO2

Average dust composition

Assumption: Sum of AI, Si and Fe oxide (AI2O3, SiO2, Fe2O3) mass = 86%

18

Elemental ratio to Al

Backgrd.

Object

Methods

Conclusion

Seasonal variability of Si (µg.m⁻³)

Wind or other mechanism?

Accumulative distribution of air mass footprint during 6 hours before the arrival at sampling station

Measured wind and modelled wind

Wind and dust

Dust concentration remained at low level even the wind speeds were high

Spearman's Correlations among dust concentration and meteorological data

All correlations are significant at the 0.05 level

Land freezing or snow cover might be responsible for the continuous low concentration in winter

Conclusion

Conclusions

Dust concentration and composition

- Weekly average mineral dust concentrations in Río Gallegos vary from 0.07 to 3.68 µg.m⁻³;
- Patagonian dust is relatively enriched in Si and Fe.

Temporal patterns of dust emission

- Higher concentration in summer, lower concentration in winter;
- Seasonal variation is associated to the temperature and air relative humidity
- Much lower dust concentration in winter due to the land frozen;

Thank you for your attention!

38

local precipitation might be responsible for the inter-annual variation.

