

A new mineralogical database for atmospheric dust to estimate soluble iron fluxes to Surface Ocean <u>E. Journet</u>¹, Y. Balkanski², K Desboeufs¹ and S. Harrison³

Dominant :

Montmor.

•Quartz

Dominant :

Chlorite

Feldspars

Quartz

Australian dust

Corresponding author: emilie.journet@lisa.u-pec.fr

¹ LISA, UPEC/UPD/CNRS, France ² LSCE CEA/CNRS, France ³ School of Geographical Sciences, University of Bristol, UK

Desert dust, ocean productivity and atmospheric pCO₂

Iron solubility driven by dust mineralogy

1- Iron solubility measured in African dust collected close to the source:

The observed variability is associated with mineralogical speciation of iron which vary according to location of the source

Examples: Mineralogical speciation of iron in two samples

2- Iron solubility measured in individual minerals :

Atmospheric iron supply can stimulate productivity in many regions of the world ocean, but only if it exists in a readily dissolvable form. => We need to estimate **iron solubility (SFe)** for mineral dust particles.

How inform the mineralogy of dust particles ?

Very few measures for a high variability

Two kind of iron, two kind of solubility :

Free iron = "insoluble" iron oxides

Structural iron = "soluble" clay minerals

Soluble iron is primarily derived from illite and montmorillonite as they are the most common clay minerals found in African dust.

3- Iron solubility in dust vs iron mineralogy

Knowing the mineralogical composition, iron solubility can be estimated from those measured on individual minerals :

 $SFe = 0,20\% * \% Fe_{illite} + 0,65\% * \% Fe_{mont}$

West Saharian dust

illite smectite kaolinite chlorite mica vermiculite feldspar quartz calcite hematite goethite

The variability of the mineralogical composition reflects the diversity of source soils

Building Database of soils mineralogy

(updated from Claquin et al., 1999)

The method is based on a quantitative description of the mineralogical composition of the erodible fraction of each soil units of the FAO classification

The method consist to document **the size-resolved mineralogy of soils** and to transport each mineral from the database, constitutive of the dust, in a General Circulation Model (GCM)

Examples of some mineralogical maps Clay fraction of soils LONGITUD ILLITE_FRACTION (%) SMECTITE FRACTION (%)

► For the clay fraction : 10 minerals Illite, montmorillonite, chlorite, vermiculite, kaolinite, calcite, quartz, feldspars, hematite and goethite

1. Soil types distribution issue from the Harmonized World Soil Database

The selection criteria:

- ✓ Size-resolved mineralogical information
- ✓ Surface horizon
- > 594 soil descriptions in the database with more than 120 references

3. Database coverage

Pourcentage of soils with mineralogy

HWSD = Only existing database that provides a global distribution of FAO soil units

- \checkmark 28 soil classes
- 230 soil units to describe ! \checkmark

2. Localization of the data

Good coverage between latitudes 0 and 30°N.

To obtain a full coverage, assumptions have been issued to assign a mineralogical composition to each soil units.

► For the silt fraction :7 minerals mica, chlorite, calcite, gypsum, quartz, feldspars and hematite.

Outlooks:

- > Simulation is running in order to simulate total and dissolved iron fluxes to surface ocean.
- > These fluxes will be compared with those obtained without taking into account the differences in soil mineralogy.

Conclusion:

The database is global in extent : it not only cover actual erodible areas but also covers areas that are not potential sources in present climate. This open the path to study : \succ Impact of mineral dust (solar radiation, cloud nucleation, ocean productivity and health) > Past and future scenarios

Derived product: Iron content in the clay fraction of soils